skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Van De Ville, Dimitri"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper considers a random component-wise variant of the unnormalized power method, which is similar to the regular power iteration except that only a random subset of indices is updated in each iteration. For the case of normal matrices, it was previously shown that random component-wise updates converge in the mean-squared sense to an eigenvector of eigenvalue 1 of the underlying matrix even in the case of the matrix having spectral radius larger than unity. In addition to the enlarged convergence regions, this study shows that the eigenvalue gap does not directly a ect the convergence rate of the randomized updates unlike the regular power method. In particular, it is shown that the rate of convergence is a ected by the phase of the eigenvalues in the case of random component-wise updates, and the randomized updates favor negative eigenvalues over positive ones. As an application, this study considers a reformulation of the component-wise updates revealing a randomized algorithm that is proven to converge to the dominant left and right singular vectors of a normalized data matrix. The algorithm is also extended to handle large-scale distributed data when computing an arbitrary rank approximation of an arbitrary data matrix. Numerical simulations verify the convergence of the proposed algorithms under di erent parameter settings. 
    more » « less